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Canonical formalism for the Born–Infeld particle

Dariusz Chrúsciński†
Fakulẗat für Physik, Universiẗat Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

Received 27 January 1998

Abstract. It has been shown that the nonlinear Born–Infeld field equations supplemented by the
‘dynamical condition’ (certain boundary conditions for the field along a particle trajectory) define
perfectly deterministic theory, i.e. the particle trajectory is determined without any equations of
motion. In the present paper we show that this theory possesses mathematically consistent
Lagrangian and Hamiltonian formulations. Moreover, it turns out that the ‘dynamical condition’
is already present in the definition of the physical phase space and, therefore, it is a basic element
in the theory.

1. Introduction

Born–Infeld electrodynamics [2] were proposed in the 1930s as an alternative for Maxwell
theory (see also [3] for a useful review). The main motivation of Born and Infeld was to
construct a theory which had classical solutions representing electrically charged particles
with finite self-energy. Born–Infeld theory indeed admits such solutions (recently Gibbons
[4] proposed to call them ‘BIons’). However, after Dirac’s paper [5] on a classical electron
and the birth of quantum electrodynamics in the 1940s Born–Infeld theory was almost totally
forgotten for a long time.

Recently, there is a new interest in this theory due to investigations in string theory. It
turns out that some very natural objects in this theory, so-called D-branes, are described by
a kind of nonlinear Born–Infeld action (see, e.g., [4, 6]). Moreover, due to the remarkable
interest in field and string theory dualities [7], the duality invariance of Born–Infeld
electrodynamics has been studied in great detail [8] (actually this invariance was already
observed by Schrödinger [9]).

Our motivation to study Born–Infeld electrodynamics is not due to string theory but
to the dynamics of a classical point charge. There are the following reasons to consider
nonlinear electromagnetism: it is well known that Maxwell electrodynamics when applied to
point-like objects is inconsistent (see [10] for the review). This inconsistency originates in
the infinite self-energy of the point charge. In Born–Infeld theory this self-energy is already
finite. Therefore, one may hope that in the theory which gives this quantity a finite value
it would be possible to describe particle self-interaction in a consistent way. Moreover, the
assumption, that the theory is effectively nonlinear in the vicinity of the charged particle is
very natural from the physical point of view which we have already learned from quantum
electrodynamics (Born tried to make contact with quantum field theory by identifying the
Born–Infeld Lagrangian as an effective Euler–Heisenberg Lagrangian [11]). It has been
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shown [12] that the effective Lagrangian can coincide with those of Born and Infeld up to
six-photon interaction terms only.

We consider a very specific model of nonlinear theory because, among other nonlinear
theories of electromagnetism, Born–Infeld theory possesses very distinguished physical
properties [13]. For example, it is the only causal spin-1 theory [14] (apart from the
Maxwell one). Recently, Born–Infeld electrodynamics was successfully applied [15] as a
model for the generation of multipole moments of charged particles.

In our previous paper [1] we studied the electrodynamics of a point charge in Born–
Infeld nonlinear theory. Due to the nonlinearity of the field equations it is impossible to
derive separate equations of motion for the charged particle corresponding, for example, to
the celebrated Lorentz–Dirac equation in the Maxwell case. Could we, therefore, determine
a particle trajectory without equations of motion? We showed [1] that it is in fact possible.
Analysing the interaction between charged particles and nonlinear electromagnetism we
proved that the conservation of total four-momentum of the composed(particle+ field)
system is equivalent to the certain boundary condition for the Born–Infeld field which has
to be satisfied along the particle trajectory. We call it a ‘dynamical condition’ (formula (16)
in the present paper) because, roughly speaking, it replaces the particle equations of motion.
Field equations supplemented by this condition define perfectly deterministic theory, i.e. the
initial data for the particle and field uniquely determine the evolution of the system.

In the present paper we show that the theory derived in [1] possesses consistent
Lagrangian and Hamiltonian structures. It is important because any reasonable physical
theory could be formulated this way. Therefore, we expect that Born–Infeld electrodynamics
completed by the dynamical condition (16) is no exception to this rule. Moreover, we
claim that the mathematically well defined canonical structure is a necessary condition for
the theory to be consistent. It should be stressed that our model of a charged particle is
different from that of Born and Infeld, i.e. our particle is not a purely electromagnetical
‘BIon’. Nevertheless, we call it a ‘Born–Infeld particle’. Particle mass, which appears, for
example, in formula (15), could be interpreted as an effective mass, i.e. a ‘mechanical’ mass
completed by ‘radiative corrections’ which are due to the electromagnetic interaction. The
finite self-energy of a charge (i.e. the mass of its Coulomb field) is already contained in
the field energy. Due to the nonlinearity of the theory there is no way to separate this self-
energy from the total field energy (in Maxwell theory this separation enables one to perform
the mass renormalization [10]). It turns out that the theory with a purely electromagnetical
charged particle (contrary to the one considered in the present paper) does not have any
consistent Hamiltonian formulation (this observation was made long ago by Pryce [16]).

The paper is organized as follows: in the next section we briefly sketch the main results
of [1]. In section 3 a second-order particle Lagrangian is constructed and it is proved that the
corresponding Euler–Lagrange equations are equivalent to our dynamical condition. Then
in section 4 we present a Hamiltonian structure together with a Poisson bracket in section 5.
Finally, we make some conclusions and outline possible generalizations.

2. Dynamical condition

In the present section we briefly sketch the main result presented in [1]. The Born–Infeld
nonlinear electrodynamics [2] is based on the following Lagrangian (we use the Heaviside–
Lorentz system of units with the velocity of lightc = 1)

LBI := √−det(bηµν)−
√−det(bηµν + Fµν) = b2(1−

√
1− 2b−2S − b−4P 2) (1)
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whereηµν denotes the Minkowski metric with the signature(−,+,+,+). The standard
Lorentz invariantsS andP are defined by:S = − 1

4FµνF
µν andP = − 1

4FµνF̃
µν (F̃ µν

denotes the dual tensor). The arbitrary parameter ‘b’ has the dimension of a field strength
(Born and Infeld called it theabsolute field) and it measures the nonlinearity of the theory.
In the limit b→∞ the LagrangianLBI tends to the Maxwell LagrangianS.

Adding to (1) the standard electromagnetic interaction term ‘jµAµ’ we may derive the
inhomogeneous field equations

∂µF̃
µν = 0 (2)

∂µG
µν = −jν (3)

whereGµν := −2∂LBI/∂Fµν . The three-dimensional electric and magnetic fields are defined
in a standard way

Ek = F 0k Bk = 1
2ε
kijFij (4)

Dk = G0k Hk = 1
2ε
kijFij . (5)

Equations (2) and (3) rewritten in three-dimensional notation have the familiar form

Ḃ = −∇ ×E ∇ ·B = 0 (6)

Ḋ = ∇ ×H − j ∇ ·D = j0 (7)

with jµ = (j0, j). Let us observe that equations (6) and (7) have formally the same form
as Maxwell equations. What makes the theory effectively nonlinear are the constitutive
relations, i.e. relations between inductions(D,B) and intensities(E,H)

E(D,B) = 1

b2R
[(b2+B2)D − (DB)B] (8)

H(D,B) = 1

b2R
[(b2+D2)B − (DB)D] (9)

with R :=
√

1+ b−2(D2+B2)+ b−4(D ×B)2.
Now, let us assume that the external currentjµ in (3) is produced by a point-like

particle moving along the time-like trajectoryζ . Due to the nonlinearity, the system (2)
and (3) is very complicated to analyse. In particular, contrary to the Maxwell case, we do
not know the general solution to the inhomogeneous Born–Infeld field equations. The main
idea of [1] (it was proposed in the Maxwell case in [17]) was as follows: instead of solving
distribution equations (2) and (3) on the entire Minkowski spacetimeM let us treat them as
a boundary problem in the regionMζ :=M− {ζ }, i.e. outside the trajectory. Obviously,
in order to well-pose the problem we have to find an appropriate boundary condition which
has to be satisfied alongζ , i.e. on the boundary∂Mζ .

To find this boundary condition we have analysed the asymptotic behaviour of the fields
in the vicinity of a charged particle. The simplest way to do this is to use the particle rest
frame. Letr denote the radial coordinate, i.e. a distance from a particle in its rest frame.
Any vector fieldF = F (r) may be formally expanded in the vicinity of a charge

F (r) =
∑
n

rnF(n) (10)

where the vectorsF(n) do not depend onr. The crucial observation is that the most singular
part of theD field behaves as

D(−2) = eA
4π

r

r
(11)
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where, due to the Gauss law, the monopole part of ther-independent functionA equals 1.
Note that in the Maxwell caseA ≡ 1. Using (11) it was shown [1] that

H ∼ r−1 E ∼ r0 B ∼ r.
Moreover, the following theorem was proved.

Theorem 1. Any regular solution of Born–Infeld field equations with point-like external
current satisfies

ET
(1) =

be

4|e| (3a− r
−2(ar)r) (12)

whereET stands for the transversal part ofE anda denotes the particle acceleration.

Therefore, when the particle trajectory isa priori given, the hyperbolicity of (2) and
(3) implies the following.

Theorem 2. The mixed (initial-boundary) value problem for the Born–Infeld equations in
Mζ with (12) playing the role of boundary condition on∂Mζ has a unique solution.

The above theorem is no longer true when we consider a particle as a dynamical object.
Choosing the particle positionq and velocityv as the Cauchy data for the particle dynamics
let us observe that despite the fact that the time derivatives(Ḋ, Ḃ, q̇, v̇) of the Cauchy data
are uniquely determined by the data themselves, the evolution of the composed system is
not uniquely determined. Indeed,̇D and Ḃ are given by the field equations,q̇ = v and
v̇ may be calculated from (12). Nevertheless, the initial value problem is not well-posed:
keeping the same initial data, the particle trajectory can be modified almost at will. This is
due to the fact, that (12) no longer plays the role of a boundary condition because we use it
as a dynamical equation to determinea. Therefore, a new boundary condition is necessary.

It was shown in [1] that this missing condition is implied by the conservation law of
the total four-momentum for the ‘particle+ field’ system

ṗµ(t) = 0 (13)

wherepµ stands for the four-momentum in any Lorentzian (laboratory) frame. Due to the
field equations only three among four equations (13) are independent, i.e. the conservation
of three-momentum

ṗ(t) = 0 (14)

implies the energy conservation. It was shown in [1] that (14) is equivalent to the following
Newton-like equation

mak = |e|b
3
Ak (15)

whereAk is the dipole part ofA, i.e. DP(A) =: Akxk/r. This equation looks formally like
a standard Newton equation. However, it could not be interpreted as the Newton equation
because its right-hand side is nota priori given (it must be calculated from field equations).

To correctly interpret (15) we have to take into account (12). Now, by calculatinga
in terms ofET

(1) and inserting into (15) we obtain the following relation between the radial
parts ofET

(1) andD(−2)

DP(4r4
0(E

T
(1))

r − λ0(D(−2))
r ) = 0 (16)
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wherer0 =
√|e|/4πb andλ0 = e2/6πm. All constants (like electric charge or particle mass)

enter into the dynamical condition (16) via two characteristic scalesr0 andλ0. Obviously
r0 measures the nonlinearity of the Born–Infeld theory (in the Maxwell caser0 ≡ 0). The
second scaleλ0 appears in any electrodynamics of charged particles, for example, it appears
in the Lorentz–Dirac equation:aµ = (e/m)Fµνextuν + λ0(ȧ

µ− a2uµ). The main result of [1]
consists of the following theorem.

Theorem 3. Born–Infeld field equations supplemented by the dynamical condition (16)
define perfectly deterministic theory, i.e. the initial data for field and particle uniquely
determine the entire evolution of the system.

3. Lagrangian structure

In this section we show that the dynamical condition (16) may be derived from the
mathematically well-defined variational principle. Guided by the example of Maxwell theory
one could guess that such a principle should be based on the following Lagrangian

Ltotal = Lfield+ Lparticle+ Lint (17)

with Lfield given by (1),Lparticle = −mγ−1 (γ−1 ≡ √1− v2) and Lint = Aµj
µ. Now,

by varyingLtotal with respect toAµ one obviously reproduces (2) and (3). However, the
variation with respect to a particle trajectory leads to the standard Lorentz equation

maµ = eFµνuν. (18)

However, despite the fact thatFµν is bounded, it is not regular at the particle position and,
therefore, the right-hand side of (18) is not well defined. This was already our motivation to
find the mathematically well-defined dynamical condition (16) which replaces the ill-defined
equations of motion (18).

Therefore, the variational principle based on (17) is not well defined. To find the correct
principle we consider more carefully the field dynamics with respect to an arbitrary moving
observer (see [18] and [19] for a general discussion). Consider an observer moving along
an arbitrary (time-like) trajectoryζ . At each point(t, q(t)) ∈ ζ , let 6t denote a three-
dimensional hyperplane orthogonal to the four-velocity vectorU = (uµ). Choose on6t
any system(xi) of Cartesian coordinates, such that an observer is located at its origin.
This system is not uniquely defined because on each6t we still have the freedom of an
O(3)-rotation. LetL denote the boost relating to the laboratory time axis∂/∂y0 with the
co-moving observer proper time axisU . Next, define the position of the∂/∂xk axis on6t
by transforming the corresponding∂/∂yk axis of the laboratory frame by the same boost.
It is easy to verify that one obtains

y0(t,x) := t + γ (t)xlvl(t) (19)

yk(t,x) := qk(t)+ Lkl (t)x
l (20)

where the boost

Lkl := δkl + γ (1+ γ−1)−1vkvl. (21)

The flat Minkowski metric tensor has in the new coordinates(x0 = t, xk) the following
form: gkl = δkl , whereas the lapse functionN and the purely rotational shift vectorN read

N = 1√
−g00

= γ−1(1+ ax) (22)

Nm = g0m = γ−1(ω × x)m (23)
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wherea is the observer acceleration vector in the co-moving frame

ai = γ 2Lil v̇
l (24)

and

ω = γ 2(1+ γ−1)−1v × v̇. (25)

The field equations have in the co-moving frame the following form (cf. a general discussion
in [20])

Ḋ = ∇ × (NH)+ (N · ∇)D − (D · ∇)N (26)

Ḃ = −∇ × (NE)+ (N · ∇)B − (B · ∇)N . (27)

In [1] we used a simplified (so-called Fermi–Walker) frame in which the shift vectorN = 0.
However, such a frame is non-local in time and, therefore, one cannot use it to define the
Hamiltonian structure in a consistent way. We observe, that the field evolution given by
(26) and (27) is a superposition of the following three transformations:
• time-translation in the direction of the observer four-velocityU ;
• a boost in the direction of the observer accelerationa;
• purely spatialO(3)-rotation around the vectorω.

It is, therefore, obvious that this evolution is generated by the following generator

Hfield := −γ−1(P0+ aR− ωS) (28)

whereP0 is the field energy,R is the static moment andS denotes the angular momentum.
These quantities, together with the field momentumP , are defined in the observer rest frame
via a symmetric energy–momentum tensor

T µν = δµν LBI − ∂LBI

∂S
F
µ
λ F

λ
ν −

∂LBI

∂P
F
µ
λ F̃

λ
ν (29)

in the standard way:

P0(t) =
∫
6t

T 00 d3x (30)

Pk(t) =
∫
6t

T 0
k d3x (31)

Rk(t) =
∫
6t

xkT
00 d3x (32)

Sk(t) =
∫
6t

εklmx
lT 0m d3x (33)

where6t denotes a rest hyperplane intersecting the observer trajectory at timet . The
relativistic factorγ−1 in (28) corresponds to the fact that we do not use the proper time
along the observer trajectoryζ but the laboratory time. The ‘−’ is chosen for future
convenience. We stress thatHfield plays the role of a Hamiltonian (with negative sign) for
any relativistic Lagrangian field theory. In the case of electrodynamics (Maxwell or general
nonlinear theory) the corresponding Hamilton equations are given by (26) and (27).

Now, let us add to this picture a charged particle by replacing the field energyP0 by
a total ‘particle+ field’ energyH = m + P0. Because the energy–momentum tensor (29)
varies in the vicinity of a particle asr−2 (in Maxwell theory asr−4), the Poincaŕe generators
(30)–(33) are well defined. Contrary to the Maxwell case no renormalization is necessary.
Obviously, the particle static moment and angular momentum vanish in its rest frame. We
define the new generator

LH := −γ−1(H+ aR− ωS). (34)
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It turns out that the above generator contains all the information about particle dynamics.
This is due to the following theorem.

Theorem 4. The generatorLH defines the second-order particle Lagrangian, i.e. varying it
with respect to the particle trajectory one recovers the dynamical condition (16).

Proof. The Euler–Lagrange equations for a second-order Lagrangian read

ṗ = ∂LH

∂q
(35)

where the momentump canonically conjugated to the particle positionq is defined by

p := ∂LH

∂v
− d

dt

(
∂LH

∂v̇

)
(36)

(see [21] for a general discussion of higher-order Lagrangians; a review of a second-order
case may be found in [18] and [19]). To calculatep one needs time derivatives ofR and
S. Using the field equations (26) and (27) and the asymptotic conditions presented in the
previous section one gets

Ṙ = γ−1(P − a× S − ω ×R) (37)

Ṡ = γ−1(a×R− ω × S). (38)

Therefore, one obtains the following formula

pk = γ vkH+ LlkPl + Al
kRl + Bl

kSl (39)

with

Al
k =

d

dt

(
γ−1 ∂a

l

∂v̇k

)
− ∂(γ

−1al)

∂vk
− γ−2εilm

(
∂am

∂v̇k
ωi + ∂ω

m

∂v̇k
ai

)
Bl
k = −

d

dt

(
γ−1∂ω

l

∂v̇k

)
+ ∂(γ

−1ωl)

∂vk
+ γ−2εilm

(
∂am

∂v̇k
ai + ∂ω

m

∂v̇k
ωi

)
.

After straightforward (but tedious) algebra one finds:Al
k = Bl

k = 0 (actually, there is a
simpler way to observe that bothAl

k andBl
k vanish. Due to the relativistic invariance one

could calculate these quantities forv = 0 and then transform the results by an appropriate
Lorentz boost. However, forv = 0 one immediately sees thatAl

k = Bl
k = 0 and, obviously,

it is also true for an arbitraryv.). Finally, one obtains

pk = γ vkH+ LlkPl . (40)

However, (40) is a total ‘particle+ field’ momentum in the laboratory frame. Therefore,
the Euler–Lagrange equations (35) reduce to the conservation law of the total momentum
(since the right-hand side of (35) vanishes in our case) and it was proved in [1] that it is
equivalent to the dynamical condition (16). This ends the proof. �

4. Hamiltonian

To find the corresponding Hamiltonian structure of this theory one has to perform the
Legendre transformation toLH . Let π denote the momentum canonically conjugated to the
particle velocityv, i.e.

π := ∂LH

∂v̇
. (41)
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We observe that due to the fact thatLH is linear in v̇ (see (24) and (25)) it is impossible
to invert (41) (i.e. to calculatėv in terms ofπ) and, therefore, the Legendre transformation
is singular. It means that in the Hamiltonian framework the phase space of our system

P = (q,p,v,π;D,B)
is subject to some constraints. To find these constraints let us apply the standard Dirac–
Bergmann procedure [22] (see also [23]). The phase spaceP is endowed with the following
canonical Poisson bracket

{F ,G} = ∂F
∂q
· ∂G
∂p
+ ∂F
∂v
· ∂G
∂π
+
∫
6

δF
δD
· ∇ × δG

δB
d3x − (F 
 G). (42)

Now, the (unreduced) Hamiltonian onP is defined by

H(q,p,v,π;D,B) = pv + πv̇ − LH . (43)

Therefore, the primary and secondary constraints read

φ
(1)
k := πk − ∂LH

∂v̇k
≈ 0 (44)

φ
(2)
k := {φ(1)k , H } = −pk + γ vkH+ LlkPl ≈ 0 (45)

where the symbol ‘≈’ refers to the ‘weak equality’. We see that the secondary constraints
φ
(2)
k = 0 reproduce (40). Using (44) and (45) we get

H = pv + γ−1H+ v̇kφ(1)k (46)

and v̇k now plays the role of a Lagrange multiplier. Let us continue with the Dirac–
Bergmann procedure and look for the tetriary constraints

φ
(3)
k := {φ(2)k , H } ≈ 0 (47)

with H given by (46). One may show (following the calculations in [1]) that (47) implies

v̇k = γ−2 |e|b
3m

(L−1)klAl (48)

which is equivalent to (15). Together with (12) it implies our dynamical condition (16).
Therefore, the consistency of the theory requires that the dynamical condition has to be
already present in the definition of the physical phase space. This way the tetriary constraints
are identically satisfied and the constraint algorithm stops at this point. Thus, the Lagrange
multiplier v̇ in (46) is, therefore, already known which means that the constraintsφ

(1)
k and

φ
(2)
k are of the second class (see the next section).

Now, on the reduced phase space, i.e.P subjected to (44) and (45) (and to the dynamical
condition (16)) the reduced Hamiltonian

H ∗(q,v;D,B) = γ (H+ vP) (49)

is equal to the total energy of the composed system in the laboratory frame. In deriving
(49) we chose as independent variables (in the particle sector) the particle positionq
and velocityv (this choice is strongly suggested by the form of constraints equations).
Obviously, this parametrization is not unique. For example, we could take as independent
variablesq andp as well. One could show (see [19]) that

v = [p(p−P)](
√
H2+ p2−P2−H)

[p(p−P)]2+H2(p−P)2 (p−P) (50)

and, therefore

H ∗(q,p;D,B) =
√
H2+ p2−P2. (51)
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Obviously, numericallyH ∗(q,v;D,B) = H ∗(q,p;D,B). We see that for a free particle,
i.e. e = 0, H = m andP = 0, the complicated formula (50) reduces to the relativistic
relation between the particle velocity and momentum:v = p/

√
m2+ p2, and formula (51)

reproduces the relativistic particle energy:E(p) =
√
m2+ p2.

5. Poisson bracket

In this section we reduce the Poisson bracket (42) (defined onP) on the reduced phase
space

P∗ = (q,v;D,B).
This is possible because, as one can easily check, constraints (44) and (45) are of the second
class

{φ(1)k , φ(1)l } = 0

{φ(1)k , φ(2)l } = −γm(gkl + γ 2vkvl) (52)

{φ(2)k , φ(2)l } =
γ |e|b

3
(vkAl − vlAk).

Therefore, due to the rules of the Dirac–Bergmann procedure [22] we obtain the following
formula for the reduced Poisson (or Dirac) bracket onP∗

{F ,G}∗ = {F ,G} + Xkl({F , φ(2)k }{φ(1)l ,G} − {F , φ(1)k }{φ(2)l ,G})− Ykl{F , φ(1)k }{φ(1)l ,G}
(53)

where

Xkl = gkl − vkvl
γm

(54)

Ykl = |e|b
3m2γ 3

(vkAl − vlAk). (55)

In particular, one easily shows that in the ‘particle sector’:

{qk, ql}∗ = 0

{qk, vl}∗ = Xkl (56)

{vk, vl}∗ = Ykl .

Others ‘commutation relations’ between variables parametrizingP∗ may be easily obtained
from (53).

Using (53) we are able to reproduce the dynamics of our theory

q̇k = {qk,H ∗}∗ = vk (57)

v̇k = {vk,H ∗}∗ = γ−2 |e|b
3m

(L−1)klAl (58)

and in the ‘field sector’ one easily finds that

Ḋk = {Dk,H ∗}∗ (59)

Ḃk = {Bk,H ∗}∗ (60)

are equivalent to (26) and (27) wherev̇ is given now by (58). We observe, that (58) is
nothing more than an identity because the dynamical condition (which is equivalent to (58)
together with (12)) is already present in the definition ofP∗. This way we have proved the
following.
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Theorem 5. The triple (P∗, H ∗, { , }∗) defines mathematically consistent canonical
structure of a point-like charge particle interacting with nonlinear Born–Infeld
electromagnetism.

As a simple implication one can prove the following theorem.

Theorem 6. Laboratory-frame Lorentz generators:

p0 = γ (H+ vlPl)
pk = γ vkH+ LlkPl
rk = γ 3(L−1)lkRl + γ εklmvlSm + qkp0

sk = γ 3(L−1)lkSl − γ εklmvlRm + εklmqlpm
form with respect to{ , }∗ the Poincaŕe algebra.

This shows that the canonical structure of our theory is perfectly consistent with the
relativistic invariance.

6. Concluding remarks

Finally, let us make the following remarks:
(1) a formalism applied in the present paper is perfectly gauge-invariant. There is no

need to use a gauge potential to couple a particle to the field.
(2) The second-order particle LagrangianLH cannot be written in the form as in formula

(17). In particular there is no ‘interaction term’ inLH . All information about the interaction
between a particle and fields is contained in the asymptotic conditions for the electromagnetic
field in the vicinity of particle trajectory. We observe thatLH serves as a Lagrangian for
a particle dynamics and a Hamiltonian for the field dynamics. Therefore, it is a non-trivial
example of a so-called Routhian function known from analytical mechanics.

(3) A total four-momentumpµ of the composed ‘particle+field’ system lies always (as it
should) in the forward light-cone. In Maxwell theory the corresponding energy–momentum
tensor is not integrable in the vicinity of a charged particle and, therefore, one has to
perform an appropriate renormalization. The simple renormalization scheme proposed in
[17] definespµ which does not satisfy this obvious property.

(4) The remarkable feature of the reduced Poisson bracket is that it is analytical at
the point e = 0. In our opinion this property is important for the construction of the
consistent electrodynamics of point-like objects. In the Maxwell case it is well known that
all non-physical solutions to the Lorentz–Dirac equation are non-analytical ate = 0 [10]. It
turns out in [19] that this non-analyticity is also present in the corresponding Hamiltonian
framework where we do not have any equations of motion (there is an analogue of the
dynamical condition). Namely, the Poisson bracket is non-analytical ate = 0. Therefore,
the analyticity of the canonical structure seems to be an important ingredient to prove
consistency of the theory. This point will be carefully discussed in the next paper.

(5) It is clear from (52) that in the case of a purely electromagnetical particle (i.e. when
the effective massm = 0) the constraintsφ(1)k andφ(2)k are no longer of a second class—φ(1)k
are first class. Therefore, they give rise to a certain gauge freedom and the reduced phase
spaceP∗ = (q,v;D,B) is not a proper space of states in this case, i.e. the dynamics of
our system cannot be consistently reduced onP∗. This means that the data(q,v;D,B)
does not determine the evolution uniquely (there is a gauge freedom). The observation that
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the purely electromagnetical particles do not have consistent Hamiltonian formulation was
made long ago by Pryce (see section 8 of [16]).

(6) Finally, we observe that variables(q,v;D,B) are highly non-canonical with respect
to the reduced Poisson bracket. It would be interesting to find a canonical set.

The results obtained in the present paper could be generalized to include many charged
particles, and to include Born–Infeld dyons, i.e. particles possessing both electric and
magnetic charges. Work on these points is in progress.
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